注册证号:H20110599,2011-12-27
<p sans serif', tahoma, verdana, helvetica; line-height: 18px;">
药品特性:化学药品,0.2g
Sorafenib用于治疗原发性肾癌(晚期肾细胞癌)、晚期原发性肝癌(肝癌)和放射性碘晚期甲状腺癌。
索拉非尼主要在肝脏内通过CYP3A4介导的氧化作用代谢,除此之外,还有通过UGT1A9介导的葡萄糖醛酸化作用代谢。索拉非尼结合物可由消化道细菌的葡萄糖醛酸糖苷酶分解,这使得索拉非尼的非结合成分可以被重新吸收。新霉素与索拉非尼联用时会干扰此过程,使得索拉非尼的平均生物利用度下降54%。
血药浓度达到稳态时,索拉非尼在血浆中约占全部血液分析物70% -85%的比例。索拉非尼有8个已知代谢产物,其中5个在血浆中被检出。索拉非尼在血浆中的主要循环代谢产物为吡啶类-N-氧化物。体外试验表明,该物质的效能与索拉非尼相似,它包含了稳态血浆中约9% -16%的血液分析物。
口服100mg索拉非尼(溶液剂)后,96%的药物在14天内被消除,其中77%通过粪便排泄,19%以糖苷酸化代谢产物的形式通过尿液排泄。有51%的原形药物随粪便排泄,尿液中未发现原形药物。 酶抑制性试验 人肝微粒体试验表明索拉非尼竞争性抑制CYP2C19,CYP2D6和CYP3A4。当咪达唑仑,右美沙芬,奥美拉唑(分别是细胞色素CYP3A4,CYP2D6和CYP2C19的底物)临床联合用药时,接着本品给药4周并不改变这些药物的体内暴露量。这些表明本品既不是这些细胞色素P450同工酶的抑制剂也不是诱导剂。 体外数据表明,索拉非尼通过UTG1A1和UTG1A9通路抑制糖苷酸代谢。当本品与伊立替康(其活性代谢物SN-38可通过UTG1A1通路进一步代谢)临床联合用药时,可导致SN-38的AUC增加67%-120%。当这些药物和索拉非尼合用时,可能会增加UTG1A1和UTG1A9的代谢底物的暴露浓度。体外试验显示索拉非尼抑制CYP2B6和CYP2C8,Ki值分别是6和1-2μM。本品与紫杉醇联合用药导致6-羟基紫杉醇(由CYP2C8代谢的紫杉醇活性代谢物)体内暴露量的增加,而不是下降。这些数据表明本品可能不是CYP2C8的体内抑制剂。当和索拉非尼同时用药时,CYP2B6和CYP2C8的全身暴露量升高。 人肝微粒体试验表明索拉非尼竞争性抑制CYP2C9,其Ki值为7-8μM。通过患者(索拉非尼和安慰剂组)合用华法林来评价索拉非尼对CYP2C9底物的潜在作用,索拉非尼组患者的PT-INR相对于基线的平均变化并不高于安慰剂组。该结果表明索拉非尼并非CYP2C9的体内抑制剂。 CYP3A4抑制剂 酮康唑是CYP3A4的强抑制剂,健康男性志愿者使用酮康唑每日一次,每次400mg,连续7天,同时口服索拉非尼单剂量每日50mg,索拉非尼的平均血药浓度并未改变。所以索拉非尼与CYP3A4抑制剂不可能具有临床药代动力学相互作用。
CYP酶诱导剂 使用索拉非尼处理培养的人肝细胞后,CYP1A2和CYP3A4的活性没有改变。这表明索拉非尼不大可能是CYP1A2和CYP3A4的诱导剂。临床上连续同时给予索拉非尼和利福平导致索拉非尼AUC值平均下降37%。其他CYP3A4酶活化诱导剂(如贯叶金丝桃,俗称圣约翰草,苯妥英,卡马西平,苯巴比妥和地塞米松)也可能增加索拉非尼的代谢,于是降低索拉非尼的浓度。